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scBERT as a large-scale pretrained deep 
language model for cell type annotation of 
single-cell RNA-seq data

Fan Yang1,7, Wenchuan Wang1,2,7, Fang Wang1,7, Yuan Fang1,3,4, Duyu Tang1, 
Junzhou Huang5, Hui Lu    2,6   and Jianhua Yao    1 

Annotating cell types on the basis of single-cell RNA-seq data 
is a prerequisite for research on disease progress and tumour 
microenvironments. Here we show that existing annotation methods 
typically suffer from a lack of curated marker gene lists, improper handling 
of batch effects and difficulty in leveraging the latent gene–gene interaction 
information, impairing their generalization and robustness. We developed 
a pretrained deep neural network-based model, single-cell bidirectional 
encoder representations from transformers (scBERT), to overcome the 
challenges. Following BERT’s approach to pretraining and fine-tuning, 
scBERT attains a general understanding of gene–gene interactions by 
being pretrained on huge amounts of unlabelled scRNA-seq data; it is then 
transferred to the cell type annotation task of unseen and user-specific 
scRNA-seq data for supervised fine-tuning. Extensive and rigorous 
benchmark studies validated the superior performance of scBERT on cell 
type annotation, novel cell type discovery, robustness to batch effects and 
model interpretability.

Single-cell RNA-sequencing (scRNA-seq) has been extensively used  
for the characterization of complex tissues and organisms at the 
single-cell level1–3, which has revolutionized transcriptomic studies. 
Accurate cell type annotation on scRNA-seq is critical for biological  
and medical research4. Cell type annotation methods can be  
categorized into three types: (1) annotation using marker genes, (2) 
annotation using correlation-based methods and (3) annotation by 
supervised classification5.

Cluster-then-annotate is the commonly used method6, where 
manually curated marker genes identified from the literature are 
employed to assign cell types for clusters derived from unsuper-
vised learning5. However, selecting the marker genes depends on the 

prior knowledge of researchers and is therefore prone to biases and 
errors7. Furthermore, marker genes for interested cell types are not 
always available, and novel cell types do not have marker gene sets 
yet. Besides, most cell types are determined by a set of genes instead 
of a single marker gene8. Without a proper method to integrate the 
expression information of multiple marker genes, it is difficult to 
guarantee a unified and accurate cell type assignment for each clus-
ter9,10. For example, some automatic annotation methods are built 
on the hypothesis that marker genes should have high expression 
in cells. However, even some well-documented marker genes do 
not have high expression in all of the cells in the corresponding cell 
types11. The absence or fluctuation of the expression of these marker 
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fine-tuning. Following BERT’s mentality and paradigm, we developed 
a novel and unified architecture named scBERT (Fig. 1), which learns 
general scRNA-seq knowledge by being pretrained on millions of unla-
belled scRNA-seq data with a variety of cell types from different sources, 
and assigns cell types by simply plugging in a classifier and fine-tuning 
the parameters supervised by reference datasets. Pretraining enables 
the model to learn the general syntax of gene–gene interactions, which 
helps to remove the batch effects across datasets and improve the 
generalizability (Extended Data Fig. 1a). Fine-tuning ensures that the 
output embedding for each gene encodes context information that is 
more relevant to the transcriptional profiles of the reference dataset. To 
annotate a query cell, scBERT computes the probability for the cell to 
be any of the cell types labelled in the reference dataset by mining the 
high-level implicit patterns (Extended Data Fig. 1b). Note that if there 
is no cell type to assign with high confidence, the query cell would be 
labelled as unassigned to prevent incorrect assignment and to allow 
novel cell type discovery. Compared with the original BERT model, 
scBERT has some innovative designs to unleash its power in the cell 
type annotation task.

First, the embedding of BERT includes token and position embed-
dings25. Our design of embeddings is similar to BERT in some aspects 
while having unique features to leverage gene knowledge. The token 
embedding of the original BERT is a discrete variable (standing for a 
word), whereas the raw expression input to our model is a continu-
ous variable (standing for the expression of a gene in a single cell) 
with biological and technical noise. We draw on the bag-of-words 
technology in the NLP26 field to bin the expressions of genes (which 
could be considered as the gene transcript frequency in each cell), 
thus converting them to discrete values with the additional benefit 
of the reduction of the data noise to some extent. As shuffling the 
columns of our input does not change its meaning (like the exten-
sion of BERT to understand tabular data with TaBERT27), absolute 
positions are meaningless for genes. Instead, gene embeddings were 
obtained from gene2vec28 to represent the gene identity (each gene 
has a unique gene2vec embedding), which could be viewed as relative 
embeddings26 to capture the semantic similarity from the aspect of 
general co-expression. The co-expression genes retain closer represen-
tations, and distributed representations of genes have proven useful 
for capturing gene–gene interactions28. In this way, scBERT formal-
izes information on the gene expressions for Transformer efficiently 
and generates a single-cell-specific embedding (scBERT embedding) 
that represents the cell-specific expression (Extended Data Fig. 1c)  
after pretraining.

Second, existing single-cell methods have to pre-process the raw 
data with selection or manipulation of genes (that is, HVG selection, 
manually selecting marker genes and PCA) due to their limited capa-
bility to efficiently model high-dimension data9,10,19,29–31; they would 
unavoidably bring artificial bias and overfitting problems, which in 
turn may severely impair their generalizability. Conversely, a Trans-
former with a large receptive field could effectively leverage the global 
information in scRNA-seq data and learn a comprehensive global rep-
resentation for each cell by unbiasedly capturing long-range gene–
gene interactions. Due to the computational complexity, the input 
sequence of Transformer is limited to a length of 512, whereas most of 
the scRNA-seq data contain over 10,000 genes. We therefore replaced 
the Transformer encoder used in BERT with Performer32 to improve 
the scalability of the model to tolerate over 16,000 gene inputs. With 
Performer, scBERT keeps the full gene-level interpretation, abandons 
the use of HVGs and dimensionality reduction and lets discrimina-
tive genes and useful interactions come to the surface by themselves 
(Extended Data Fig. 1d). scBERT therefore allows for the discovery of 
gene expression patterns and longer-range dependency for cell type 
annotation in an unbiased data-driven manner. scBERT is stable and 
robust, instead of relying heavily on the hyperparameter selection 
(Extended Data Fig. 1e).

genes might therefore considerably affect the preciseness of marker- 
gene-based methods.

Instead of relying on a spot of marker genes, correlation-based 
methods measure the correlation of gene expression profiles between 
the query samples and reference dataset5. These methods are poten-
tially affected by the batch effect across platforms and experiments12. 
Although batch-effect correction methods exist, it is still challenging 
to distinguish true biological diversity from technical differences and 
thus preserve important biological variations13. Meanwhile, the com-
monly used similarity measures (that is, cosine similarity, Spearman’s 
correlation and Pearson correlation) may not be robust or efficient at 
measuring the distance between two sets of high-dimensional, sparse 
scRNA-seq data14.

Annotation by supervised/semi-supervised classification meth-
ods follows the classic paradigm in machine learning that recognizes 
patterns in gene expression profiles and then transfers the labels from 
labelled to unlabelled datasets5. Such methods have been widely used 
recently due to their robustness to noise and variability of data, as well 
as their independence from artificially selected marker genes. Never-
theless, due to their limited model capacity, most of these methods 
need to perform highly variable gene (HVG) selection and dimensional-
ity reduction before inputting the data into the classifier15–19. However, 
HVGs are variable across different batches and datasets, hindering 
their generalization ability across cohorts16. Dimensionality reduc-
tion techniques such as principal component analysis (PCA) may lose 
high-dimensional information as well as gene-level independent inter-
pretability. Furthermore, the parameter settings for HVG selection and 
PCA in these methods are far from reaching a consensus and inevitably 
introduce artificial bias for performance evaluation15–19. Given that the 
HVGs are selected on the basis of the expression variance across the 
whole dataset, in which the dominant cell types account for the most 
variance, there is a risk of overlooking the key genes of rare cell types. 
Selecting HVGs ignores co-occurrence and the biological interactions 
of genes (especially between HVGs and non-HVGs), which are use-
ful for cell type annotation20. Besides, simple classifiers such as fully 
connected networks were not able to efficiently capture gene–gene 
interactions. A new method with improved pattern recognition ability 
is therefore required to overcome the above issues of under-fitting to 
large-scale datasets.

A growing number of deep learning-based methods have recently 
been applied to scRNA-seq data analyses and achieved superior perfor-
mance21–23. The bidirectional encoder representations from transform-
ers (BERT) is a state-of-the-art (SOTA) Transformer-based language 
representation learning model. It has made breakthrough progress 
in the fields of natural language processing (NLP) due to the powerful 
self-attention mechanism and long-range information integration 
capability introduced by transformer layers24,25. BERT’s paradigm of 
pretraining and fine-tuning enables the use of large-scale unlabelled 
data to improve the generalizability of the AI model. Inspired by such 
exciting progress, we developed single-cell BERT (scBERT) model 
for the cell annotation of scRNA-seq data. Following the pretrain-
ing and fine-tuning paradigm, we validated the power of applying 
self-supervised learning on large-scale unlabelled scRNA-seq data to 
improve the model’s generalizability and overcome the batch effect. 
Extensive benchmarking indicated that scBERT can provide robust 
and accurate cell type annotations with gene-level interpretability. 
To the best of our knowledge, scBERT pioneered the application of 
Transformer architectures in scRNA-seq data analysis with innovatively 
designed embeddings for genes.

Results
The scBERT algorithm
The original BERT25 proposed a revolutionary technique that gener-
ates generic knowledge of language by pretraining and then transfers 
the knowledge to downstream tasks of different configurations using 
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Fig. 1 | Overview of the scBERT model. a, Self-supervised learning on unlabelled 
data and fine-tuning on task-specific data. At the self-supervised pretraining 
stage, unlabelled data were collected from PanglaoDB. Masked expression 
embedding and gene embedding were added as input and then fed into the 
Performer blocks. The reconstructor was used to generate outputs. Outputs for 
masked genes were used to calculate the reconstruction loss. At the supervised 
fine-tuning stage, the task-specific scRNA-seq data were input into the pretrained 
encoder. The output representation then passed a one-dimensional convolution 
layer and a classifier to generate the cell type prediction. ⊕ represents element-
wise addition. The Performer encoder is the component that is shared between 
the models used in the pretraining and fine-tuning stages. The reconstructor and 

the classifier are independently and separately employed for the models during 
the pretraining and fine-tuning processes. b, Illustration of the embeddings of 
scBERT. The preprocessed scRNA-seq data are first converted into discretized 
expression, and then the non-zero expressions are randomly masked. Taking the 
first gene as an example, the gene embedding EG1 (the gene identity from 
gene2vec falling into the first bin) and the expression embedding EB2 (the gene 
expression falling into the second bin and being transformed to the same 
dimension as the EG1) are summed and fed into scBERT to generate 
representations for genes. The representations are then used for pretraining or 
fine-tuning.

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 4 | October 2022 | 852–866  855

Article https://doi.org/10.1038/s42256-022-00534-z

Evaluating cell type annotation robustness on intra-dataset
We first benchmarked the performance of scBERT against other meth-
ods on nine scRNA-seq datasets covering 17 major organs/tissues, more 
than 50 cell types, over 500,000 cells, and mainstream single-cell omics 
technologies (Drop-seq, 10X, SMART-seq and Sanger-Nuclei), com-
prehensively considering the diversity in data size, as well as the data 
complexity33 (Supplementary Table 1). Marker-gene-based methods 
(SCINA, Garnett, scSorter), correlation-based methods (Seurat v4, 
SingleR, scmap_cell, scmap_cluster, Cell_ID(c), Cell_ID(g)) and machine 
learning-based methods (SciBet, scNym) were used for comparison 
(Supplementary Table 2). For each of the datasets, we applied the 
fivefold cross-validation strategy to avoid the influence of random 
results on the conclusion. scBERT surpassed the comparison methods 
in both accuracy and macro F1-score on most of the datasets (Fig. 2a 
and Extended Data Fig. 2).

Among the intra-dataset, the Zheng68K dataset from human 
peripheral blood mononuclear cells (PBMCs) is the most representa-
tive dataset for benchmarking cell type annotation methods. Due 
to the severe cell type imbalance and the extremely high similari-
ties between subtypes, even the SOTA method could not achieve an 
accuracy above 0.71. The performance of scBERT, with complete 
deletion of reported marker genes, is already on par with the best 
performance of existing methods (Extended Data Fig. 1b), demon-
strating the superiority of scBERT’s pattern recognition ability on 
gene expressions compared with those methods that heavily depend 
on known marker genes. With the addition of marker genes, scBERT 
could capture more comprehensive gene expression patterns con-
structed by them. With all genes as inputs, scBERT surpassed SOTA 
methods by a large margin on overall cells (Fig. 2b,c, and Extended 
Data Figs. 3 and Fig. 4a; scBERT F1-score = 0.691, accuracy = 0.759; best 
F1-score by other methods = 0.659, accuracy = 0.704) and achieved the 
highest performance for CD8+ cytotoxic T cells and CD8+/CD45RA+ 
T cells (F1-score = 0.788 versus 0.617, P-value = 9.025 × 10 −5; accu-
racy = 0.801 versus 0.724, P-value = 2.265 × 10−5), which are highly 
similar and were difficult to distinguish in previous studies34. The 
results indicated that scBERT could recognize the underlying gene 
expression patterns and long-range gene–gene dependency after 
pretraining, capture diverse feature subspace by multi-head attention 
and enjoy comprehensive high-level representation of cell type-specific  
global information.

Notably, the list of best-performing methods changes across dif-
ferent tasks and datasets, whereas scBERT is always among it. For 
instance, the top-tier methods for the inter-dataset (that is, scNym and 
Seurat) performed badly on the Xin dataset in Fig. 2. These uncertain-
ties in performance reflect the limitations of the comparison methods 
in their generalizability, as well as the generalization of our method 
across all of the benchmarking datasets.

To explore whether the number of cells of a reference dataset 
affects the performance of scBERT, we constructed a series of refer-
ence datasets from the Zheng68K dataset by uniformly subsampling 
it proportionally from 10% to 90% (Fig. 2d). With only 30% of the cells, 
scBERT outperformed all of the other methods and its performance 
improved rapidly as the reference cell number increased.

We next tested the robustness of scBERT when the distributions 
of cell types were severely biased. Four cell types from the Zheng68K 
dataset (CD8+ cytotoxic T cells, CD19+ B cells, CD34+ cells and CD8+/
CD45RA+ naive cytotoxic cells), with transcriptomic similarity between 
each pair, were selected for class-imbalanced tests. scBERT surpassed 
all of the other methods (accuracy = 0.840 and F1-score = 0.826). Seurat 
misidentifed CD8+ cytotoxic T cells as CD8+/CD45RA+ naive cytotoxic 
cells, whereas SingleR misclassified all of the CD19+ B cells due to their 
rarity. scBERT, however, exhibited the lowest misclassification rate 
even though the two cell populations are highly similar (Fig. 2e and 
Extended Data Fig. 4b). Overall, the results indicate that scBERT is 
robust to class-imbalanced datasets.

Cell type annotation across cohorts and organs
In real-world circumstances, the reference and query datasets are 
always sourced from multiple studies, and even different sequencing 
platforms, where the batch effects can lead to poor performance on 
cell type annotation (Fig. 3a). Here we benchmarked scBERT and com-
parison methods by employing a leave-one-dataset-out strategy with 
human pancreas datasets generated by distinct sequencing techniques 
(Baron35, Muraro36, Segerstolpe37 and Xin38; Fig. 3 and Extended Data 
Fig. 5). Machine-learning-based methods (scBERT, scNym and SciBet) 
achieved the best results, indicating that cell-type-specific patterns 
could be discovered by pattern recognition without being affected 
by batch effects; Seurat, however, relies on compulsive batch correc-
tion before the annotation. For cross-cohort data, scBERT achieved 
a superior performance by a large magin, with an accuracy of 0.992 
compared with scNym (accuracy of 0.904), and outperformed other 
popular methods (accuracies: SciBet = 0.985, Seurat = 0.984, Sin-
gleR = 0.987; Fig. 3b). scBERT correctly annotated most cells (>97%) 
in the Muraro dataset, and over 99% of the cells in the other three 
datasets, demonstrating the superb and stable performance of our 
method in cross-cohort tasks. By contrast, scNym misclassified the 
alpha cells as the beta cell type and was confused by the beta and delta 
cells (Fig. 3e,f). We then used cells from different organs to benchmark 
the performance of scBERT and comparison methods on cross-organ 
dataset. The experiment results demonstrated that scBERT is on par 
with comparison methods on cross-organ task (Extended Data Fig. 5b).  
scBERT showed its robustness in identifying cells from different 
sequencing technologies, experiments, different disease states (type-2 
diabetes and health) and even different organs.

Discovery of novel cell types
In most tasks, the reference dataset may not cover all of the cell types 
present in the query dataset. The marker-based methods are hindered 
by the manually selected markers of known cell types and therefore may 
face difficulty distinguishing unseen cell types; the correlation-based 
methods, however, usually force the model to assign a novel class to 
the closest known class. The machine learning-based methods could 
automatically and actively detect the novel cell types by checking the 
predicted probability. Besides, scBERT enjoys some potential advan-
tages. First, the multi-head attention mechanism allows scBERT to 
extract information from different representation subspaces, which 

Fig. 2 | Benchmarking and robustness evaluation by intra-dataset cross-
validation. a, Performance of cell type annotation methods measured by 
accuracy and F1-score on n = 9 datasets using fivefold cross-validation. Box 
plots show the median (centre lines), interquartile range (hinges) and 1.5-times 
the interquartile range (whiskers). The F1-scores of these datasets are shown in 
Extended Data Fig. 2a. The performance of SCINA, Garnett and scSorter is shown 
in Extended Data Fig. 2b. The results of Tucker dataset, Lung dataset and Human 
Cell Atlas dataset are shown in Extended Data Fig. 2c,d. b, t-SNE plot of the whole 
Zheng68K dataset (n = 68,450 cells). Left panel is coloured by expert-annotated 
cell types from the original research; right panel is coloured by scBERT prediction 
results. The t-SNE plots of the annotation of comparison methods are shown 

in Extended Data Fig. 3. c, Heatmaps for the confusion matrices of the cross-
validation results on the Zheng68K dataset for scBERT, Seurat and CellID_cell. 
The confusion matrices of other methods are included in Extended Data  
Fig. 4a. d, The influence on the cell type annotation performance by splitting 
different proportions of the Zheng68K dataset as the reference set for fine-
tuning. The standard deviations are shown as the error bar. e, Heatmap for the 
confusion matrices of scBERT of cross-validation on the imbalanced dataset 
reconstructed from Zheng68K dataset. The confusion matrices of other methods 
are included in Extended Data Fig. 4b. The detailed reconstruction process is 
introduced in the Methods.
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might be a benefit for capturing the subtle differences between novel 
and known cell types. Second, scBERT may have possibly seen the 
novel cells and learnt their unique patterns during pretraining on a 

large-scale, diverse dataset. Third, Transformer with a large recep-
tive field could effectively learn comprehensive global representation 
by capturing long-range gene–gene interactions, which may better 
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Fig. 3 | Performance of scBERT across independent datasets generated by 
different single-cell sequencing technologies. a, A t-SNE representation of 
10,220 cells from four independent datasets (Baron, Muraro, Segerstolpe and 
Xin) generated by different sequencing platforms (inDrop, CEL-Seq2, SMART-
Seq2 and SMARTer). Cells are coloured by the source of datasets. b, t-SNE 
representation of alpha, beta, delta and gamma cells from four pancreas datasets 
coloured by the annotated cell types provided by the atlas from the original 
paper. c, Comparison of accuracy and F1-score of inter-dataset cross-validation 
among different methods. The lower and upper hinges denote the first and third 

quartiles, with the whiskers in the range of 1.5-times the interquartile. d, Zoomed-
in plot of accuracy and F1-score of the top-tier methods. e, t-SNE representation 
of alpha, beta, delta and gamma cells from four pancreas datasets (left), beta 
cells from the Muraro dataset (middle) and alpha cells from the Segerstolpe 
dataset (right) coloured by scBERT prediction. f, t-SNE representation of alpha, 
beta, delta and gamma cells from four pancreas datasets (left), beta cells from 
the Muraro dataset (middle) and alpha cells from the Segerstolpe dataset (right) 
coloured by scNym prediction. t-SNE plots of other comparison methods are 
shown in Extended Data Fig. 5a.
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characterize and distinguish novel cells41. scBERT performed the best 
on novel cell types and achieved the top-ranked performance on the 
known cell types (Fig. 4). CellID_cell performed well on known cell 

types but failed to discover any novel cells. SciBet and scmap_cluster 
are prone to assigning unknown labels to those cells from known types, 
which greatly reducees their known cell type classification accuracy. 
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Fig. 5 | Model interpretability. a, Heatmap for the attention weights provided 
by scBERT on the Pancreas cell type annotation task. The detailed attention 
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weights are listed for each cell type. The complete top gene list can be found in 
Supplementary Table 3. b, The results of enrichment analysis of the top attention 
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Compared with SciBet and scmap_cluster, our method achieves supe-
rior accuracy on both the novel (scBERT = 0.329 versus SciBet = 0.174 
and scmap_cluster = 0.174) and known (scBERT = 0.942 versus Sci-
Bet = 0.784 and scmap_cluster = 0.666) classes. Taken together, these 
results suggest that scBERT can correctly discover novel cell types that 
are not present in original reference datasets while remaining accurate 
in predicting the performance of other cell types.

Investigating scBERT model interpretability
Existing machine learning methods have to select HVGs or reduce 
dimensionality due to their simplified network architecture and low 
model capacity, hence destroying the gene-level interpretability. By 
contrast, the attention mechanism employed in scBERT naturally  
provides hints for the decision-making of the model using every indi-
vidual gene.

Here we took the Muraro dataset as an illustration, and 
top-attention-gene lists were produced for the four kinds of pan-
creas islet cells, with well-studied biological functions (Fig. 5a). The 
top-attention genes included reported markers of specific cell types 
(LOXL4 for alpha cells and ADCYAP1 for beta cells39; Extended Data 
Fig. 6a). Almost all of the top-attention genes, except markers, were 
identified as differentially expressed genes using DESeq40, as potential 
novel markers (Fig. 5c and Extended Data Fig. 6b). For instance, SCD5 
has not been reported as a cell-type-specific marker for beta cells, but 
in a GWAS study, a novel loci for type-2 diabetes susceptibility was 
fine-mapped to a coding variant of SCD41. The results demonstrated 
that scBERT could facilitate understanding the cell type annotated and 
provide some support for further biological findings.

Enrichment analysis was performed for the top-50 attention-gene 
lists using various gene-set libraries; the results revealed that there 
were some interesting relationships between the top enriched terms 
and the corresponding cell types (Fig. 5b and Supplementary Tables 
3–15). In particular, with the cell-type-associated gene-set library from 
PanglaoDB, the top-one-enriched term for each type always hits the 
true cell population. As another example, insulin secretion and AMPK 
signal pathway, the top-two-enriched KEGG pathways in beta cells, are 
vital to beta cell function. Furthermore, based on the clustering per-
formance, the scBERT embedding is more distinguishable for cell type 
annotation than raw gene expression (ARI: 0.95 versus 0.87), indicating 
the efficiency of scBERT in learning single-cell-specific representation, 
which can be used for downstream analysis (Fig. 5d).

Discussion
To improve the generalization ability of the cell type annotation 
algorithm and the interpretability of individual gene importance, we 
developed scBERT (a deep learning model with a multi-head attention 
mechanism and self-supervised strategy) to learn domain-irrelevant 
gene expression patterns and interactions from the whole genome 
expression of large-scale, unlabelled scRNA-seq data; transfer the 
general knowledge to cell type annotation task by fine-tuning; and 
trace back to the importance of each individual gene for model 
interpretability. By systematically analysing the components of 
scBERT, we gain several insights into the application of Transformer 
in single-cell data analysis (that is, the benefits of pretraining, rec-
ognization of non-marker patterns, detection of subtle gene–gene 
interactions, single-cell-specific embeddings and hyperparam-
eters sensitivity). See the Methods and Extended Data Fig. 1 for a  
systematic analysis.

scBERT surpasses the existing advanced methods on diverse 
benchmarks, collectively involving 9 single-cell datasets, 17 major 
organs/tissues, more than 50 cell types, over 500,000 cells and the 
mainstream single-cell omics technologies (that is, Drop-seq, 10X, 
SMART-seq and Sanger-Nuclei), indicating its generalization and 
robustness. Notably, we employed the accuracy, macro F1-score and 
confusion matrix as evaluation metrics to benchmark the performance 

of cell type annotation methods on their classification ability for a fair 
comparison in this study.

To the best of our knowledge, there is currently no research on 
applying Transformer architectures to gene expression data analysis. 
The originally designed end-to-end scBERT framework, with gene 
expression embedding and a self-learning strategy, has superior perfor-
mance, interpretability and generalization potential on cell type anno-
tation tasks. Beyond that, scBERT can also be applied to other tasks by 
simply modifying the output and supervision signals. scBERT, as an 
effective cell type annotation tool, has been released on the platform 
for public usage. We hope that scBERT could improve understanding 
of cell-type-associated gene–gene interactions and nurture the revolu-
tion of AI paradigm in single-cell RNA-seq analysis.

Despite the above advantages, the scBERT may face potential 
limitations including gene expression embedding, modelling gene 
interactions and the masking strategy during the pretraining stage.

First, the token embedding of the original BERT is for discrete 
variables (standing for a word), whereas the expression input is a con-
tinuous variable (standing for the expression of a gene in a single cell), 
which may have biological and technical noise. scBERT converts them 
to discrete values and could thus reduce some data noise compared 
with existing methods, which utilize the expression values directly; 
however, it sacrifices some data resolution, and there is still room 
to optimize the embedding of gene expression for model input. Our 
approach for binning the expression may cause some resolution loss. 
Second, gene interactions usually exist in the form of networks (that 
is, gene regulatory networks and biological signalling pathways)42, 
and this kind of prior knowledge has not been explicitly incorporated 
in scBERT. Aggregating information from neighbours within a graph 
neural network based on biological networks may better mimic gene–
gene interactions. The idea could be applied to the single-cell analysis 
by building cell-level graph using the scRNA-seq data. From this point 
of view, it can be foreseen that Transformers for graph43 may be the 
future development direction of scBERT44. Third, the efficiency of 
masking during pretraining is another point worth optimizing. The 
current masking strategy in scBERT is simplified with non-zero mask-
ing. With the zero-inflated input45, the model might be inclined to 
output all zeroes for the reconstruction task during pretraining. We 
therefore masked the non-zero values and calculated the loss based 
on the non-zero values during pretraining; however, masking only the 
non-zero values may lower the utilization of the single-cell data for 
pretraining, due to their minority. Advanced masking strategy tailored 
for single-cell data could be introduced to improve the computational 
efficiency of the masking process.

For future work, we would like to explore the versatility and flex-
ibility of scBERT in a variety of downstream tasks (that is, gene–gene 
interaction, batch correction, clustering, differential analysis in disease 
conditions)46.

Methods
The scBERT model
The scBERT model adopts the advanced paradigm of BERT and tailors 
the architecture to solve single-cell data analysis. The connections 
of our model with BERT are given as follows. First, scBERT follows 
BERT’s revolutionary method to conduct self-supervised pretrain-
ing25 and use Transformer as the model backbone32. Second, our 
design of embeddings is similar to BERT in some aspects while having 
unique features to leverage gene knowledge. From this perspective, 
our expression embedding could be viewed as the token embedding 
of BERT. As shuffling the columns of our input does not change its 
meaning (like the extension of BERT to understand tabular data with 
TaBERT27), absolute positions are meaningless for gene. We instead 
use gene2vec to produce gene embeddings, which could be viewed as 
relative embeddings26 that capture the semantic similarities between 
any of two genes. Third, Transformer with global receptive field could 
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effectively learn global representation and long-range dependency 
without absolute position information, achieving excellent perfor-
mance on non-sequential data (such as images, tables)24,27.

Gene embedding. In NLP, the inputs of the BERT model are word 
embeddings, a set of real-valued vectors in a pre-defined vector space 
that represent individual words. The word embedding technology helps 
to better represent the text by assuring the words with similar meanings 
have a similar representation46. However, from the aspect of scRNA-seq, 
the inputs are constituted by individual genes and a pre-defined vector 
space is needed to represent the similarity between them. Hence we 
employed gene2vec28 to specifically encode gene embeddings. In this 
way, the difficulty of model training is reduced, with the help of the 
inter-gene relationship provided by past knowledge.

Expression embedding. In spite of the gene embedding, there is also 
a challenge on how to utilize the transcription level of each gene, which 
is actually a single continuous variable. It is worth noting that the fre-
quency of a word’s occurrence in a text is valuable information for text 
analysis and is often transformed as a bag-of-words by term-frequency 
statistical analysis for downstream tasks in the area of NLP47. The gene 
expression could also be considered as the occurrence of each gene that 
has already been well-documented in a biological system. From this 
insight, we applied the conventionally used term-frequency-analysis 
method that discretizes the continuous expression variables by bin-
ning, and converts them into 200-dimensional vectors, which are then 
used as token embeddings for the scBERT model.

Model building. The quadratic computational complexity of the BERT 
model with Transformer as the basic unit does not scale very well to 
long sequences, whereas the gene number of scRNA-seq can be up 
to more than 20,000. To this end, a matrix decomposition version of 
Transformer (that is, Performer) was employed to enlarge the sequence 
length. The regular dot-product attention in Transformer is a mapping 
of Q, K, V, which are encoded representations of the input queries, keys 
and values created for each unit, respectively. The bidirectional atten-
tion matrix is formulated as:

Att (Q,K,V) = D−1 (QKT) V,D = diag (QKT1L) (1)

where Q = WqX, K = WKX, V = WVX are linear transformations of the input 
X; WQ, WK, WV are the weight matrices as parameters; 1L is the all-ones 
vector of length L; and diag(⋅) is a diagonal matrix with the input vector 
as the diagonal.

The attention matrix in Performer is described as follows:

Âtt (Q,K,V) = D̂−1 (Q′ ((K′)T V)) , D̂ = diag (Q′ ((K′)T 1L)) (2)

where Q′ = ∅(Q), K′ = ∅(K), and the function ∅(x) is defined as:

∅(X) = c
√m

f (ωTX) (3)

where c is a positive constant, ω is a random feature matrix, and m is 
the dimesionality of the matrix. Here we constructed our model with 
six Performer encoder layers and ten heads for each layer.

The model training process contains two stages: self-supervised 
learning on unlabelled data to get a pretrained model and super-
vised learning on the specific cell type annotation tasks to get the  
fine-tuned model.

Self-supervised learning on unlabelled data. In this study, we fol-
lowed the conventional self-learning strategy of the BERT model 
in NLP tasks by randomly masking the input data value and making 
a prediction on the basis of the remaining inputs. Considering the 

dropout zeroes phenomenon48, we randomly masked the non-zero 
gene expression and then reconstructed the original inputs by model 
predictions using the remaining genes. We ultilized cross-entropy loss 
as the reconstruction loss, formulated as:

LRec = −
M
∑
i=1

N
∑
j=1
yi,j log (pi,j) (4)

where M is the number of cells and N is the number of masked gene 
expression values; yi,j and pi,j are the true and predicted expressions, 
respectively, of gene j in cell i. With this self-supervised strategy, the 
model can learn general deep representations of gene expression pat-
terns on the large amount of unlabelled data, which might alleviate the 
efforts of the downstream fine-tuning process.

Supervised learning on specific tasks. The output of scBERT 
was a 200-dimensional feature corresponding to each gene, and a 
one-dimensional convolution was applied for abstract information 
extraction for each gene feature. A three-layer neural network was then 
applied as the classification head and transformed the gene features 
into the probability for each cell type. Cross-entropy loss was also 
employed as the cell type label prediction loss, calculated as:

LPred = −
M
∑
i=1
zi log (qi) (5)

where zi and qi indicate the ground-truth cell type label and predicted 
label of cell i, respectively.

Datasets
As the model training consists of two stages, self-supervised learning 
on unlabelled data and fine-tuning on task-specific data, the dataset 
used in the two stages were collected from different sources to avoid 
data leakage. In the first stage, large amounts of data without annota-
tions were used for general pattern learning, whereas, in the second, 
task-specific data with well-annotated cell labels were required for the 
subsequential systematic benchmarking of the scBERT and SOTA meth-
ods. To this end, we only included scRNA-seq datasets that provided 
highly credible cell type annotation and had been cited by the major-
ity of the cell type annotation methods for performance evaluation.

The Panglao dataset. The Panglao dataset49 was downloaded from 
the PanglaoDB website (https://panglaodb.se/). In brief, PanglaoDB 
integrated 209 human single-cell datasets comprising 74 tissues with 
1,126,580 cells originating from different experimental sources via vari-
ous platforms. In this study, we used scRNA-seq data from PanglaoDB 
for first-stage pretraining. No annotations or cell labels were used at 
the first stage as the self-learning strategy was employed, and only 
the genes and their expression levels were needed as inputs for the 
scBERT model.

Zheng68k dataset. The Zheng68k is a classic PBMC dataset by 10X 
CHROMIUM that is widely used for cell type annotation performance 
acessment34. It contains about 68,450 cells within eleven subtypes of 
cells: CD8+ cytotoxic T cells (30.3%), CD8+/CD45RA+ naive cytotoxic 
cells (24.3%), CD56+ NK cells (12.8%), CD4+/CD25 T Reg cells (9.0%), 
CD19+ B cells (8.6%), CD4+/CD45RO+ memory cells (4.5%), CD14+ 
monocyte cells (4.2%), dendritic cells (3.1%), CD4+/CD45RA+/CD25- 
naive T cells (2.7%), CD34+ cells (0.4%) and CD4+ T Helper2 cells (0.1%). 
The Zheng68k dataset contains rare cell types, and the distribution of 
cell types in this dataset is imbalanced. Strong correlations between 
cell types make it difficult to differentiate them.

Pancreas datasets. The pancreas datasets comprise Baron, Muraro, 
Segerstolpe and Xin. The cell type labels were aligned and four cell 
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types were included. The Baron dataset was downloaded from the Gene 
Expression Omnibus (GEO) (accession no. GSE84133) and the protocol 
was inDrop35. The Muraro dataset was downloaded from GEO (acces-
sion no. GSE85241) and the protocol was CEL-Seq236. The Segerstolpe 
dataset was accessed from ArrayExpress (accession no. E-MTAB-5061) 
and the protocol was Smart-Seq237. The Xin dataset was downloaded 
from GEO (accession no. GSE81608) and the protocol was SMARTer38. 
The above pancreas datasets were generated from different experiment 
platforms (Supplementary Table 1).

MacParland dataset. The MacParland dataset50 from human liver 
tissue contains 20 hepatic cell populations from the transcriptional 
profiling of 8,444 cells by 10X CHROMIUM. We downloaded the data 
from GEO (accession no. GSE115469) and generated the cell type anno-
tation following the authors’ reported procedure.

Heart datasets. The heart datasets contain one large dataset51 for 
pretraining, and the Tucker dataset52 for benchmarking and evalu-
ation in the hyperparameter sensitivity analysis. The large heart 
dataset for pretraining contains 451,513 cells from 11 cell types by 
four different sequencing platforms (Harvard-Nuclei, Sanger-Nuclei, 
Sanger-Cells, and Sanger-CD45) and was downloaded from https://
data.humancellatlas.org/explore/projects/ad98d3cd-26fb-4ee3-
99c9-8a2ab085e737. The Tucker dataset contains 287,269 cells from 
11 cell types via single nuclear RNA-sequencing and was downloaded 
from https://singlecell.broadinstitute.org/single_cell/study/SCP498/
transcriptional-and-cellular-diversity-of-the-human-heart.

Lung dataset. The lung dataset was from human lung tissue and ana-
lysed for COVID-19-related disease mechanisms53. The dataset contains 
samples from 12 donors by 10X Genomics sequencing, and 39,778 
cells from nine cell types. The data were downloaded from https://doi.
org/10.6084/m9.figshare.11981034.v1.

Human Cell Atlas dataset. The Human Cell Atlas dataset54 contains 
84,363 cells from 27 cell types among 15 major organs (skin, oesopha-
gus, trachea, heart, spleen, common bile duct, stomach, liver, blood, 
lymph node, small intestine, bladder, rectum, marrow, muscle) by 
HiSeq X Ten sequencing. The dataset was downloaded from GEO (acces-
sion no. GSE159929).

Data pre-processing
As for the data provided in gene expression matrix format, 
log-normalization was performed on the data, using a size factor of 
10,000 and quality control by filtering cell outliers with less than 200 
genes expressed. As for the input of scBERT, no dimension reduction 
or HVG selection was processed as scBERT has a capacity of more than 
20,000 genes as input and retains full gene-level interpretability.

Comparison methods
For benchmarking, we implemented SOTA methods from the three 
annotation categories: marker-based, correlation-based and supervised 
classification. Among them, SCINA, Garnett and scSorter represent 
annotation using marker gene databases; Seurat, SingleR, CellID and 
scmap are correlation-based methods; and scNym and Scibet are the 
SOTA methods that conduct annotation by supervised/semi-supervised 
classification. Notably, this categorization depends on how the most 
important process is conducted. As for marker gene-based annotation, 
the CellMarker database with manually curated cell-type markers using 
a literature search of over 100 000 papers was applied for the marker 
database55. No manual selection of the marker genes was included for 
an unbiased and fair comparison of all of the methods.

scNym. scNym is a recently proposed semi-supervised learning annota-
tion method that leverages the unlabelled target data through training 

a domain adversary56. It requires no prior manual specification of 
marker genes. It makes use of the target data by domain adaptation 
and achieves the best performance on several tasks; however, users 
have to endure the inconvenience that they must re-train the model 
on each batch of new-coming data.

SciBet. Scibet is a supervised classification method that selects genes 
using E-test for multinomial model building and annotates cell types 
for a new cell in the test set19. We adopted SciBet in R package for 
benchmarking.

Seurat. As a popular single-cell data analysis pipeline, Seurat is widely 
used by biologists and clinical experts. Seurat maps the query samples 
to the reference dataset in a reference-based annotation manner57. In 
this study, we adopted the implementation of the cell type annotation 
of Seurat v.4.0 and followed the cell type annotation tutorial provided 
by Seurat for benchmarking.

SingleR. SingleR is a reference-based analysis method that calculates 
the Spearman coefficient on variable genes and aggregates the coef-
ficients to score the cell for each cell type58. It iterates on the above pro-
cess by subsampling top genes until the most closely related cell types 
are distinguished. The SingleR package was applied for benchmarking.

CellID. CellID is a clustering-free multivariant statistical method 
for cell type annotation that performs dimensionality reduction, 
evaluates the gene-to-cell distance and extracts gene signatures for  
cells (cell-to-cell strategy) and groups (group-to-cell strategy)29.  
In this study, both strategies from the R package were used for 
benchmarking.

scmap. A reference-based annotation method including two strate-
gies: scmap_cluster and scmap_cell; scmap_cluster maps individual 
cells from query samples to certain cell types in the reference dataset, 
whereas scmap_cell maps individual cells from query samples to indi-
vidual cells in a reference dataset30. Both scmap_cluster and scmap_cell 
perform feature selection and calculate distances (the cosin and euclid-
ean distances). The reference is searched for the nearest neighbours 
to a query cell. We used the R package of scmap for the scmap-cluster 
and scmap_cell tools.

SCINA. SCINA is a typical marker gene-based annotation method that 
requires a list of marker genes for different cell types and identifies the 
cell types based on the assumption that there exists a bimodal distribu-
tion for each marker gene and the higher modes belong to the relevant 
cell type9. We used the Scina package for benchmarking.

Garnett. Garnett requires a user-defined cell hierarchy of cell types  
and marker genes as input. Garnett aggregates marker gene scores 
using term frequency-inverse document frequency transformation 
and uses an elastic-net regression-based model for annotation10. 
We adopted the original R package to use the garnet model for 
benchmarking.

scSorter. Scsorter employs marker genes and the HVGs for clustering 
and cell type annotation based on the observation that most marker 
genes do not consistently preserve high expression levels in all of 
the cells belonging to the related cell types31. Here we adopted the R 
implement of Scsorter.

Benchmarking
To assess the performance of the annotation methods under different 
scenarios, nine pairs of reference and test datasets were generated, 
and the performance was evaluated using scBERT and all the above 
methods. The details are listed below.
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Performance on intra-dataset data using cross-validation. The 
PBMC data are from Zheng68k with high inter-class similarity, the Pan-
creas datasets (Baron, Muraro, Segerstolpe and Xin), the MacParland 
dataset, the Tucker dataset, the Lung dataset and the Human Cell Atlas 
dataset and were employed to test the performance on the intra-dataset 
in a fivefold cross-validation manner. Notably, the reference dataset 
in this section also refers to the training dataset for the supervised 
methods, including scBERT.

Performance on the inter-dataset data. To evaluate the robustness 
of the methods on cross-cohort data with batch effects from differ-
ent single-cell sequencing platforms, we tested the methods on four 
pancreas datasets (Baron, Muraro, Segerstolpe and Xin), taking three 
datasets as the training set and the remaining one as the test set each 
time. Considering the difference in cell populations among these data-
sets, all datasets were aligned, retaining only four kinds of pancreas 
islet cells (alpha, beta, delta and gamma cells) that are common in these 
datasets. To evaluate the robustness of the methods on cross-organ 
data, we tested the methods on three major organs (the oesophagus, 
rectum and stomach) from Human Cell Atlas dataset.

The influence of reference cell amount on the performance. The 
number of reference cells is prone to influence the model perfor-
mance. In this study, 10%, 30%, 50%, 70% and 90% of the PBMC cells 
from the Zheng68K dataset were randomly selected as the reference 
for fine-tuning while the remaining as the query samples for testing.

Class-imbalanced data tests. Following the construction method for 
class-imbalanced data4, we collected four PBMC cell types (CD19+ B, 
CD8+ cytotoxic T, CD34+ and CD8+/CD45RA naive cytoxic cells) that 
contain various levels of similarity across cell types from Zheng68K 
data. The cells of the four types were randomly selected with the cell 
numbers 10,000, 100, 10,000 and 100, respectively, as reference data 
for fine-tuning. As for model testing, 100 cells were randomly selected 
per cell type as query data.

Novel cell type detection. Human liver tissue was used to assess 
the unknown cell type identification. Here we adopted MacParland 
dataset50 from human liver tissues with 8,434 cells belonging to 14 cell 
types. In this experiment, we took four immune cells for novel cell type 
simulation, which were absent from other liver datasets. Following 
the schema proposed in the previous study7, we performed leave-out 
one cell type evaluation by removing one cell type from the reference 
dataset while keeping the cell type groups in the query dataset. The 
evaluation process was iterated on each cell type. At present, there is 
no unified quantitative evaluation metrics for detection of novel cell 
type. Some approaches compute the accuracy by putting the novel 
class together with known classes, which unavoidably overwhelms 
the models’ accuracy for rare and novel cell types. Besides accurately 
detecting novel cell types, a good cell type annotation method should 
maintain the ability to accurately discriminate known cell types. In 
this regard, we evaluate the accuracy of novel cell type and known cell 
types, separately. Notably, we employed a strict evaluation method for 
novel cell types with the accuracy calculated on the union set of cells 
with the novel cell type label and the cells that are predicted as novel  
cell types.

Assessment on the necessity of self-learning. To illustrate the neces-
sity of the self-learning process of scBERT, the performance gain was 
evaluated on the model after self-learning and fine-tuning compared 
to the model training from scratch.

Evaluation metrics. Cell type annotation performance of each method 
at cell-level and cell-type-level was evaluated using the metrics of accu-
racy and macro F1-score, respectively. Since cell type annotation task 

and cell clustering task are not equivalent, those metrics assessing the 
quality and distance of clusters are excluded from this study.

Sensitivity analysis on the hyperparameters. The influence of the 
hyperparameters (size of the embedding vector, the binning setting, 
the number of encoder layers and the number of heads for each layer) 
were systematically estimated on the heart datasets with large-scale 
heart dataset (451,513 cells) as the pretraining dataset and the Tucker 
dataset as the evaluation dataset.

Scalability. When evaluating on the large Tucker datasets with 
287,269 cells, those comparison methods implemented in R faced 
severe problem in scalability due to their poor memory management. 
For instance, CellID met the memory bottleneck when calculating a 
matrix of 50,000 × 230,000, and we made efforts to split the matrix 
into pieces to avoid memory overflow. Conversely, benefiting from 
mini-batch sampling and the efficient Performer encoder, scBERT 
could easily deal with large-scale datasets at both the pretraining and 
the fine-tuning stage.

Marker genes for the marker-based comparison methods. To avoid 
bias introduced by marker selection, well-documented marker lists 
associated with well-defined cell types from CellMarker55 were used.

Systematic analysis of scBERT
Pretraining versus not pretraining. Following BERT’s pretraining and 
fine-tuning paradigm, our method is prone to generate an efficient 
encoder and provide a general embedding that better represents the 
gene expression of each cell by revealing critical patterns with lower 
data noise. The results of the ablation study on model performance 
with and without pretraining (Extended Data Fig. 1a) demonstrated 
the essentiality of pretraining for the model’s downstreaming task 
(that is, cell type annotation), with a relatively large and important 
difference in the bioinformatics field. The scBERT model extracts the 
useful attention pattern on gene expressions and interactions from 
a large scale of various scRNA-seq data, alleviating the efforts of the 
fine-tuning process on the specific downstream tasks.

Feasibility on classifying with gene expression patterns. It is well 
known that marker genes play a key role in cell type annotation for 
marker gene-based annotation, and most of the reference-based 
annotation. Even some of the supervised-based methods are heav-
ily dependent on prior marker gene knowledge. Among the current 
mainstream methods that use marker genes for classification, some 
methods use the gene expression pattern for cell type annotation. 
Both types of method were reported to achieve good performance on 
variable cell type annotation tasks, indicating that both types of data 
imply discriminative information for different cell types. To investigate 
the effect of marker genes and the discriminant ability of the remain-
ing expression patterns that comprise only the non-marker genes, we 
conducted experiments in which marker genes were eliminated gradu-
ally, leaving the remaining expression profiles for cell type annotation 
(Extended Data Fig. 1b and Supplementary Table 16). The results prove 
that the marker genes are important for cell type annotation; however, 
in addition to the marker genes, there are still informative gene patterns 
that have good distinguishing power on cell type classification. With 
deletion of 100% of marker genes, scBERT can still efficiently learn the 
informative gene patterns and achieve a performance that is on par 
with the best performance achieved by comparison methods with all 
of the marker genes on the representative Zheng68K dataset (Extended 
Data Fig. 1b). We also explored detected gene lists from scBERT, and 
other machine learning (scNym) and non-machine learning (Seurat) 
methods on MacParland and Baron, respectively (Supplementary 
Tables 17 and 18). Consistent with the above experiment on the dele-
tion of markers, we observe that machine learning-based methods 

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 4 | October 2022 | 852–866  864

Article https://doi.org/10.1038/s42256-022-00534-z

tend to learn high-level implicit cell-type-specific patterns (that is, 
discovering some genes with a high rank across cell types), whereas 
non-machine-learning-based methods usually simply find differentially 
expressed genes using statistics analysis. The results indicated that 
the attention mechanism, saliency mechanism and statistics analysis 
could gain complementary information from different perspectives 
on the mining pattern of single-cell data.

General gene embedding versus single-cell-specific embedding. 
Gene2vec is based on bulk data28, which measures the average expres-
sion of genes from tissues and is the sum of cell type-specific gene 
expression weighted by cell type proportions59. In this regard, gen-
e2vec maintains the general co-expression patterns of genes but stays 
away from strong noise and high sparsity of single-cell sequencing. 
We therefore utilized gene2vec as our gene embedding to represent 
the gene identity (each gene has a unique gene2vec embedding) and 
the semantic similarity from the aspect of general co-expression pat-
tern. The encoder of scBERT could also learn a single-cell-specific 
embedding (we briefly call it scBERT embedding) that represents 
the cell-specific expression. To illustrate the evolution of the embed-
ding (or representation) during the model learning, we visualized the 
examples of gene2vec and scBERT embedding in Extended Data Fig. 1b. 
Our model could generate different representations of the same gene 
for different cell inputs, whereas gene2vec generated all of the same 
representations of the same gene for different cell inputs. We observed 
that the scBERT embedding exhibits a cell-type-specific representa-
tion (that is, the example representation of the gene is substantially 
enriched in alpha cells), which is suitable for downstreaming the cell 
type annotation task. Furthermore, the cell-type-specific representa-
tion learns some correlation beyond gene2vec. Benefiting from the 
attention mechanism of the Performer, the model could detect the 
subtle gene interaction patterns that can only be seen in single-cell 
data after model training on scRNA-seq data (Extended Data Fig. 1d). 
It could be observed that some genes have strong attention weights 
to all other genes, indicating that it plays a critical role in identifying 
the implicit patterns, which is consistent with the conclusion of the 
detected gene lists in Supplementary Tables 17 and 18.

Influence of hyperparameters. A systematic investigation into the 
sensitivity of hyperparameters—including the number of bins, the 
size of scBERT embedding vector, the number of attention heads, and 
the number of Performer encoder layers—was performed on scBERT 
(Extended Data Fig. 1b). First, the expression embedding by ranking 
raw expression into seven bins is suitable for scBERT. Increasing the 
bin numbers to nine hinders the model performance, indicating that 
ranking the gene expression would denoise the raw data and improve 
scBERT’s efficiency in learning meaningful patterns. By contrast, 
reducing the bin numbers would also affect the model performance 
due to the loss of gene expression information (that is, blurring the 
relatively large gene expression difference). The above experimental 
results proved that the proper design of bin numbers that balance 
denoising while reserving expression information would benefit the 
model performance. Second, gene2vec provided an embedding of 
200 dimensions and achieved the best performance compared with 
other dimensions. Reduction of the dimension of scBERT embedding 
vector in the latent space would impair the model’s representation 
ability and performance (especially when the dimension is 50). Third, 
the Performer with ten attention heads is suitable for our method. 
Decreasing the number of attention heads might reduce the model 
representation ability due to fewer representative subspaces. Increas-
ing the number of attention heads seems to have limited influence on 
the performance; however, the over-parameterized model (with 20 
attention heads) faces a risk of overfitting, especially when applying 
to small datasets. Similarly, the model performs stable with four and 
six of Performer encoder layers but might suffer from an under- or 

overfitting problem when decreasing or increasing the number of 
layers. Overall, the small fluctuations of the above parameters had 
little effect on the performance of the model, which also verified the 
robustness of scBERT.

Model interpretability
We conducted a comprehensive interpretability analysis to explore 
the key genes for decision-making, as scBERT models were built on the 
self-attention mechanism and all of the genes’ representations 
remained at the end of our workflow. The attention weights reflect the 
contribution of each gene and the interaction of gene pairs. The atten-
tion weights can be obtained from equation (1), modified by replacing 
V with V0, where V0 contains one-hot indicators for each position index. 
We integrated all the attention matrices into one matrix by taking an 
element-wise average across all attention matrices in multi-head 
multi-layer Performers. In this average attention matrix, each value 
A (i, j) represented how much attention from gene i was paid to gene j. 
To focus on the importance of genes to each cell, we summed the atten-
tion matrix along with columns into an attention-sum vector, and its 
length is equal to the number of genes. In this way, we could obtain the 
top attention genes corresponding to a specific cell type compared to 
other cell types. The attention weights were visualized and the top 
genes were sent to Enrichr32 for enrichment analysis.

Enrichment analysis was performed for the top-50-attention-gene 
lists using various gene-set libraries, and the results revealed there were 
some interesting relationships between top-enriched terms and the 
corresponding cell types.

Statistical analysis
The Wilcoxon test was applied for the significance test. Cross-validation 
was employed in all the benchmarking experiments, and standard 
deviations were drawn in the figures. Normalized confusion matrix was 
used for displaying the prediction. The significance was calculated by 
Wilcoxon test on the paired groups. Jaccard index was used for similar-
ity measure for the detected gene lists by different methods. The ARI 
was applied to for similarity measure for clusters.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
All data used in this study are publicly available and the usages are 
fully illustrated in the Methods. The published Panglao dataset was 
downloaded from https://panglaodb.se/. The published Zheng68k 
dataset was downloaded from the ‘Fresh 68K PBMCs’ section at https://
support.10xgenomics.com/single-cell-gene-expression/datasets 
(SRP073767)34. The published pancreatic datasets were downloaded 
from github at https://hemberg-lab.github.io/scRNA.seq.datasets/ 
(Baron: GSE84133, Muraro: GSE85241, Segerstolpe: E-MTAB-5061, 
Xin: GSE81608)35–38. The MacParland dataset was downloaded 
from https://www.ncbi.nlm.nih.gov/geo/ (GSE115469)50. The heart 
datasets were downloaded from https://data.humancellatlas.org/
explore/projects/ad98d3cd-26fb-4ee3-99c9-8a2ab085e737 and 
https://singlecell.broadinstitute.org/single_cell/study/SCP498/
transcriptional-and-cellular-diversity-of-the-human-heart (refs. 51,52). 
The lung dataset for COVID-19 study was downloaded from https://
doi.org/10.6084/m9.figshare.11981034.v1 (ref. 53). The adult Human 
Cell Atlas of 15 major organs dataset was downloaded from https://
www.ncbi.nlm.nih.gov/geo/ (GSE159929)54. Source Data are provided 
with this paper.

Code availability
The source code of the pre-processing, scBERT modelling and 
fine-tuning processes are freely available on Github (https://github.
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com/TencentAILabHealthcare/scBERT) and Zenodo (https://doi.
org/10.5281/zenodo.6572672)60 with detailed instructions. The source 
code for the other comparison methods are publicly available (see 
Supplementary Table 2).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | The system analysis of the architecture design of 
scBERT. a, Performance of scBERT (with/without pre-training) measured by 
accuracy and F1-score on Zheng68K dataset using 5-fold cross-validation. scBERT 
with pre-training is trained on over 1,000,000 cells from public scRNA-seq data 
from PanglaoDB. In the contrast, the model weights of scBERT without 
pre-training are initiated randomly. Box plot shows the median (centre lines), 
interquartile range (hinges) and 1.5 times the interquartile range (whiskers).  
b, Performance evaluation on the effect of gradually removing marker genes  
(no deletion, deletion of 10%, deletion of 50% and deletion of 100% markers) on 
accuracy. Box plot shows the median (centre lines), interquartile range (hinges), 
and 1.5 times the interquartile range (whiskers). The green dashed line represents 

the best performance achieved by other cell type annotation methods with all 
marker genes. c, UMAP representation of alpha, beta, delta, and gamma cells 
from Muraro dataset coloured by gene2vec embedding (sum of 200-dimension 
vectors) (top) and scBERT embedding (bottom) of alpha-specific gene LOXL4.  
d, The heatmap of average attention matrix obtained by taking an element-wise 
average across all attention matrices in multi-head multi-layer Performers. Each 
value A (i, j) (i and j indicate the index of row and column) represents how much 
attention from gene i was paid to gene j. e, Sensitivity analysis of 
hyperparameters includes the number of bins (top left), the dimension of scBERT 
embedding vector (top right), the number of attention heads (bottom left) and 
the number of Performer encoder layers (bottom right).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Performance comparison between scBERT and other 
cell type annotation methods on intra-datasets. a, Performance of scBERT 
and other automatic cell type annotation methods measured by F1-score on n = 6 
datasets (Zheng68K, Baron, Muraro, Xin, Segerstolpe, and MacParland) using 
5-fold cross-validation. Box plots show the median (centre lines), interquartile 
range (hinges), and 1.5 times the interquartile range (whiskers). b, Performance 
of scBERT and marker-based methods (SCINA, Garnett, scSorter) measured by 

accuracy (left) and F1-score (right) on Zheng68K dataset using 5-fold cross-
validation. Box plot shows the median (centre lines), interquartile range (hinges), 
and 1.5 times the interquartile range (whiskers). c-d, Performance of scBERT and 
other automatic cell type annotation methods measured by accuracy (c) and 
F1-score (d) on n = 3 datasets (Tucker dataset, lung dataset and Human Cell Atlas 
dataset) using 5-fold cross-validation. Box plots show the median (centre lines), 
interquartile range (hinges), and 1.5 times the interquartile range (whiskers).
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Extended Data Fig. 3 | Heatmaps for the confusion matrices of the results 
on Zheng68k dataset for other comparison methods. a, The tSNE plots show 
the cell type annotation results of comparison methods (scNym, SciBet, Seurat, 

SingleR, CellID_cell, CellID_group, scmap_cell, scmap_cluster, SCINA, Garnett, 
scSorter) on Zheng68K dataset. The colours indicate the cell types annotation 
result from each individual method.
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Extended Data Fig. 4 | t-SNE plots of the cell type annotation results on 
Zheng68K dataset (n = 68,450 cells). a, Heatmaps for the prediction confusion 
matrices on Zheng68K dataset for scNym, SciBet, SingleR, CellID_group, scmap_

cell, and scmap_cluster. b, Heatmaps for the prediction confusion matrices on 
the imbalanced dataset constructed from Zheng68K dataset for Seurat, SingleR, 
CellID_cell, CellID_group, scmap_cell, and scmap_cluster.

http://www.nature.com/natmachintell


Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-022-00534-z

Extended Data Fig. 5 | Performance comparison between scBERT and other 
cell type annotation methods on cross-cohort dataset and cross-organ 
dataset. a, t-SNE representation of alpha, beta, delta, and gamma cells from four 
pancreas datasets (n = 10,220 cells). The top left t-SNE plot is coloured by the 
annotated cell types provided by the atlas from the original paper, meanwhile 
other t-SNE plots are coloured by the cell type annotation results of comparison 

methods (SciBet, Seurat, SingleR, CellID_cell, CellID_group, scmap_cell, and 
scmap_cluster). b, Performance of scBERT and other cell type annotation 
methods measured by accuracy (left) and F1-score (right) on datasets from 3 
organs (n = 17,384) using 5-fold cross-validation. Box plots show the median 
(centre lines), interquartile range (hinges), and 1.5 times the interquartile range 
(whiskers).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | The distribution of the top attention sum genes across 
the four cell types of the Muraro dataset. a, UMAP representation of alpha, 
beta, delta, and gamma cells from Muraro dataset coloured by expression 
distribution of top attention sum genes that are consistent with reported 
marker genes for alpha, beta, delta and gamma cells, respectively. b, UMAP 

representation of alpha, beta, delta, and gamma cells from Muraro dataset 
coloured by expression distribution of top attention sum genes that have 
distinguishing patterns on corresponding cell types but have not been reported 
as markers yet.
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